3.34 \(\int \frac{(e g+f g x)^{-1+p}}{\log (d (e+f x)^p)} \, dx\)

Optimal. Leaf size=42 \[ \frac{(e+f x)^{1-p} (g (e+f x))^{p-1} \text{li}\left (d (e+f x)^p\right )}{d f p} \]

[Out]

((e + f*x)^(1 - p)*(g*(e + f*x))^(-1 + p)*LogIntegral[d*(e + f*x)^p])/(d*f*p)

________________________________________________________________________________________

Rubi [A]  time = 0.0760003, antiderivative size = 42, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16, Rules used = {2390, 2308, 2307, 2298} \[ \frac{(e+f x)^{1-p} (g (e+f x))^{p-1} \text{li}\left (d (e+f x)^p\right )}{d f p} \]

Antiderivative was successfully verified.

[In]

Int[(e*g + f*g*x)^(-1 + p)/Log[d*(e + f*x)^p],x]

[Out]

((e + f*x)^(1 - p)*(g*(e + f*x))^(-1 + p)*LogIntegral[d*(e + f*x)^p])/(d*f*p)

Rule 2390

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_) + (g_.)*(x_))^(q_.), x_Symbol] :> Dist[1/
e, Subst[Int[((f*x)/d)^q*(a + b*Log[c*x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p, q}, x]
 && EqQ[e*f - d*g, 0]

Rule 2308

Int[((d_)*(x_))^(m_.)/Log[(c_.)*(x_)^(n_)], x_Symbol] :> Dist[(d*x)^m/x^m, Int[x^m/Log[c*x^n], x], x] /; FreeQ
[{c, d, m, n}, x] && EqQ[m, n - 1]

Rule 2307

Int[(x_)^(m_.)/Log[(c_.)*(x_)^(n_)], x_Symbol] :> Dist[1/n, Subst[Int[1/Log[c*x], x], x, x^n], x] /; FreeQ[{c,
 m, n}, x] && EqQ[m, n - 1]

Rule 2298

Int[Log[(c_.)*(x_)]^(-1), x_Symbol] :> Simp[LogIntegral[c*x]/c, x] /; FreeQ[c, x]

Rubi steps

\begin{align*} \int \frac{(e g+f g x)^{-1+p}}{\log \left (d (e+f x)^p\right )} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{(g x)^{-1+p}}{\log \left (d x^p\right )} \, dx,x,e+f x\right )}{f}\\ &=\frac{\left ((e+f x)^{1-p} (g (e+f x))^{-1+p}\right ) \operatorname{Subst}\left (\int \frac{x^{-1+p}}{\log \left (d x^p\right )} \, dx,x,e+f x\right )}{f}\\ &=\frac{\left ((e+f x)^{1-p} (g (e+f x))^{-1+p}\right ) \operatorname{Subst}\left (\int \frac{1}{\log (d x)} \, dx,x,(e+f x)^p\right )}{f p}\\ &=\frac{(e+f x)^{1-p} (g (e+f x))^{-1+p} \text{li}\left (d (e+f x)^p\right )}{d f p}\\ \end{align*}

Mathematica [A]  time = 0.0217888, size = 42, normalized size = 1. \[ \frac{(e+f x)^{1-p} (g (e+f x))^{p-1} \text{li}\left (d (e+f x)^p\right )}{d f p} \]

Antiderivative was successfully verified.

[In]

Integrate[(e*g + f*g*x)^(-1 + p)/Log[d*(e + f*x)^p],x]

[Out]

((e + f*x)^(1 - p)*(g*(e + f*x))^(-1 + p)*LogIntegral[d*(e + f*x)^p])/(d*f*p)

________________________________________________________________________________________

Maple [F]  time = 1.007, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( fgx+eg \right ) ^{-1+p}}{\ln \left ( d \left ( fx+e \right ) ^{p} \right ) }}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f*g*x+e*g)^(-1+p)/ln(d*(f*x+e)^p),x)

[Out]

int((f*g*x+e*g)^(-1+p)/ln(d*(f*x+e)^p),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (f g x + e g\right )}^{p - 1}}{\log \left ({\left (f x + e\right )}^{p} d\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*g*x+e*g)^(-1+p)/log(d*(f*x+e)^p),x, algorithm="maxima")

[Out]

integrate((f*g*x + e*g)^(p - 1)/log((f*x + e)^p*d), x)

________________________________________________________________________________________

Fricas [A]  time = 2.08763, size = 63, normalized size = 1.5 \begin{align*} \frac{g^{p - 1}{\rm Ei}\left (p \log \left (f x + e\right ) + \log \left (d\right )\right )}{d f p} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*g*x+e*g)^(-1+p)/log(d*(f*x+e)^p),x, algorithm="fricas")

[Out]

g^(p - 1)*Ei(p*log(f*x + e) + log(d))/(d*f*p)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (g \left (e + f x\right )\right )^{p - 1}}{\log{\left (d \left (e + f x\right )^{p} \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*g*x+e*g)**(-1+p)/ln(d*(f*x+e)**p),x)

[Out]

Integral((g*(e + f*x))**(p - 1)/log(d*(e + f*x)**p), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (f g x + e g\right )}^{p - 1}}{\log \left ({\left (f x + e\right )}^{p} d\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*g*x+e*g)^(-1+p)/log(d*(f*x+e)^p),x, algorithm="giac")

[Out]

integrate((f*g*x + e*g)^(p - 1)/log((f*x + e)^p*d), x)